Search results

Search for "near-field enhancement" in Full Text gives 20 result(s) in Beilstein Journal of Nanotechnology.

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
PDF
Album
Review
Published 02 Jul 2021

Optically and electrically driven nanoantennas

  • Monika Fleischer,
  • Dai Zhang and
  • Alfred J. Meixner

Beilstein J. Nanotechnol. 2020, 11, 1542–1545, doi:10.3762/bjnano.11.136

Graphical Abstract
  • configurations with increasing control over their optical performance [1][2][3][4]. The strong local near-field enhancement by plasmonic nanoantennas is being harnessed for high sensitivity, high-resolution optical nanospectroscopy techniques [5], such as surface-enhanced or tip-enhanced Raman spectroscopy (SERS
PDF
Editorial
Published 07 Oct 2020

Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

  • Marius van den Berg,
  • Ardeshir Moeinian,
  • Arne Kobald,
  • Yu-Ting Chen,
  • Anke Horneber,
  • Steffen Strehle,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2020, 11, 1147–1156, doi:10.3762/bjnano.11.99

Graphical Abstract
  • the coupling between the oscillation field in the excited tip and its mirror image in the substrate. We have shown in a previous theoretical work that the permittivity of the tip and the substrate influences the near-field enhancement at the tip apex significantly [33]. In the next set of experiments
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2020

Biomimetic synthesis of Ag-coated glasswing butterfly arrays as ultra-sensitive SERS substrates for efficient trace detection of pesticides

  • Guochao Shi,
  • Mingli Wang,
  • Yanying Zhu,
  • Yuhong Wang,
  • Xiaoya Yan,
  • Xin Sun,
  • Haijun Xu and
  • Wanli Ma

Beilstein J. Nanotechnol. 2019, 10, 578–588, doi:10.3762/bjnano.10.59

Graphical Abstract
  • . Simultaneously, suitable nanogaps between the adjacent nanostructures were generated in which high near-field enhancement could be achieved. As shown in the inset of Figure 2e, where the Nano Measurer 1.2 software was used, the average width of the nanofilm was approximately 170 ± 10 nm (the average width was
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2019

Silencing the second harmonic generation from plasmonic nanodimers: A comprehensive discussion

  • Jérémy Butet,
  • Gabriel D. Bernasconi and
  • Olivier J. F. Martin

Beilstein J. Nanotechnol. 2018, 9, 2674–2683, doi:10.3762/bjnano.9.250

Graphical Abstract
  • well-known and has been reported in various publications – it has been established, as a cornerstone of nonlinear plasmonics, that the nonlinear optical responses of plasmonic nanostructures is boosted by LSPRs [31][32]. Indeed, a strong near-field enhancement is associated with the collective
  • the second harmonic intensity observed for gaps larger than 220 nm is attributed to the radiative coupling between the nanorods, which slightly modifies the fundamental near-field enhancement as the distance between the nanorods varies. Having discussed the role of the resonant wavelength with respect
  • behavior is similar for the rectangular arms, i.e., a strong near-field enhancement is observed in the gap for the smallest gaps (Figure 8), meaning that the SHG from this kind of nanoantennas is also ruled by the “silencing effect”. Finally, the original approach proposed in this article is applied to the
PDF
Album
Full Research Paper
Published 15 Oct 2018

Metal–dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode

  • Valerio F. Gili,
  • Lavinia Ghirardini,
  • Davide Rocco,
  • Giuseppe Marino,
  • Ivan Favero,
  • Iännis Roland,
  • Giovanni Pellegrini,
  • Lamberto Duò,
  • Marco Finazzi,
  • Luca Carletti,
  • Andrea Locatelli,
  • Aristide Lemaître,
  • Dragomir Neshev,
  • Costantino De Angelis,
  • Giuseppe Leo and
  • Michele Celebrano

Beilstein J. Nanotechnol. 2018, 9, 2306–2314, doi:10.3762/bjnano.9.215

Graphical Abstract
  • -field enhancement, which are characteristic of this mode. Plasmonic nanostructures, on the other hand, remain the most promising solution to achieve strong local field confinement, especially in the NIR, where metals such as gold display relatively low losses. Results: We present a nonlinear hybrid
  • spectrum. In this frame, AlGaAs nanoantennas demonstrated to be extremely efficient sources of second harmonic radiation. In particular, the nonlinear polarization of an optical system pumped at the anapole mode can be potentially boosted, due to both the strong dip in the scattering spectrum and the near
PDF
Album
Full Research Paper
Published 27 Aug 2018

Ta2N3 nanocrystals grown in Al2O3 thin layers

  • Krešimir Salamon,
  • Maja Buljan,
  • Iva Šarić,
  • Mladen Petravić and
  • Sigrid Bernstorff

Beilstein J. Nanotechnol. 2017, 8, 2162–2170, doi:10.3762/bjnano.8.215

Graphical Abstract
  • light to nano-scale structures via local surface plasmon resonance (LSPR) [1]. LSPR produces a strong near-field enhancement and a local heating [2][3], which are considered to be promising in several applications ranging from surface-enhanced Raman scattering [4], to catalysis [5] and heat-assisted
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2017

The role of morphology and coupling of gold nanoparticles in optical breakdown during picosecond pulse exposures

  • Yevgeniy R. Davletshin and
  • J. Carl Kumaradas

Beilstein J. Nanotechnol. 2016, 7, 869–880, doi:10.3762/bjnano.7.79

Graphical Abstract
  • resonance peaks of gold nanospheres towards the near infrared region. (This is useful in biological applications, where light has a good penetration depth) [5][16]. The use of plasmonic nanoparticles and the associated near-field enhancement has been used in applications based on the laser-induced breakdown
  • a high near-field enhancement surrounding the gold nanorod (the near-field regime). At picosecond pulses with low irradiation fluence, nanoparticle-mediated LIB is dominated by photo-thermal emission due to the fast temperature increase of the electrons in the nanostructure. The lack of a detailed
  • the picosecond regime is highly dependent on the optical near-field enhancement instead of nanoparticle size and absorption cross-section. The findings of this study will help in LIB-related fields to advance the understanding of nanoparticle–laser interactions, which will lead to the better design of
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2016

Linear and nonlinear optical properties of hybrid metallic–dielectric plasmonic nanoantennas

  • Mario Hentschel,
  • Bernd Metzger,
  • Bastian Knabe,
  • Karsten Buse and
  • Harald Giessen

Beilstein J. Nanotechnol. 2016, 7, 111–120, doi:10.3762/bjnano.7.13

Graphical Abstract
  • ]. One can also transport energy on deep subwavelength length scales [5], create the plasmonic analogue of electromagnetically induced transparency (EIT) [6][7][8][9], and construct systems with tailorable near-field enhancement and confinement [10][11][12][13]. What is more, the resonant behavior of
PDF
Album
Full Research Paper
Published 26 Jan 2016

Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons

  • Kai Braun,
  • Xiao Wang,
  • Andreas M. Kern,
  • Hilmar Adler,
  • Heiko Peisert,
  • Thomas Chassé,
  • Dai Zhang and
  • Alfred J. Meixner

Beilstein J. Nanotechnol. 2015, 6, 1100–1106, doi:10.3762/bjnano.6.111

Graphical Abstract
  • intensity, the effective Raman scattering coefficient in the tunneling junction taking the near field enhancement into account is estimated as σR ≈ 10−9. Having found the steady-state solution to Equation 1 and Equation 3, the total radiative yield γem of the hybrid system at different bias voltages and
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2015

Electromagnetic enhancement of ordered silver nanorod arrays evaluated by discrete dipole approximation

  • Guoke Wei,
  • Jinliang Wang and
  • Yu Chen

Beilstein J. Nanotechnol. 2015, 6, 686–696, doi:10.3762/bjnano.6.69

Graphical Abstract
  • intense fields for SERS due to the “lightening rod effect” [5][6][17]. However, similar EFs from S42 and S−42:42, as well as S0:−42:42 and S0:42, show that there are no significant contribution from near-field enhancement right at the corners/bends. This indicates that strong EM coupling in the narrow gap
  • is the dominant factor for the near-field enhancement in these arrays. We further investigated the dependence of EF on the length of AgNR in different structures. A range of aspect ratios from 2.0 to 5.0 was chosen for S42 arrays, while ARs ranging from 3.0 to 5.0 were applied to other structures due
  • angle increases as the tilting angle of nanorod (with respect to the surface normal) decreases [32]. Therefore, it is not surprising that the optimal incident angle found in our simulation is smaller than that reported in [31]. In fact, the angular dependence of near-field enhancement was also found in
PDF
Album
Full Research Paper
Published 09 Mar 2015

Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity

  • Dan Lis and
  • Francesca Cecchet

Beilstein J. Nanotechnol. 2014, 5, 2275–2292, doi:10.3762/bjnano.5.237

Graphical Abstract
  • of biological properties and behaviours, and has opened the way to fascinating biomedical and biotechnological applications of single molecules and nanomaterials [7][17][18][19][20]. This success is mostly due to the electromagnetic near-field enhancement achieved thanks to more and more
  • IR or spontaneous Raman spectroscopies. To push forward the performance of both techniques, the coupling of the molecular coherence and power-law intensity dependence with the near-field enhancement from surface plasmon resonance has been initiated, and some demonstrations of an extreme sensitivity
  • surface of the nanoparticle [54][55][56][57][58]. Besides, the near-field enhancement has led to a very large variety of advances in many fundamental and applied areas of science. Large boosts in the sensitivity and intensity have been reported for a very wide variety of nanoparticle shapes, dimensions
PDF
Album
Review
Published 28 Nov 2014

Optical near-fields & nearfield optics

  • Alfred J. Meixner and
  • Paul Leiderer

Beilstein J. Nanotechnol. 2014, 5, 186–187, doi:10.3762/bjnano.5.19

Graphical Abstract
  • ” with a length of a few nanometers. This effect of strong near-field enhancement around sharp structures of noble metals has been known from Surface Enhanced Raman Scattering (SERS) for a long time [1]. Yet, the well-controlled tailoring of nanostructures necessary to quantitatively control the optical
  • numerous other applications of near-field enhancement, e.g., in biosensors, solar cells and semiconductor quantum dots to name but a few. A challenging question, investigated in this series by Esmann et al. [3], is how light can be most efficiently coupled into sub-wavelength dimensions by means of an
  • far-field tweezers. In spite of the high efficiency of plasmonic metal nanostructures, the near-field enhancement of dielectric structures is preferable for some applications. Walhorn et al. [8] have developed a method for the simultaneous recording of topography and fluorescence that allows for the
PDF
Editorial
Published 19 Feb 2014

Dye-doped spheres with plasmonic semi-shells: Lasing modes and scattering at realistic gain levels

  • Nikita Arnold,
  • Boyang Ding,
  • Calin Hrelescu and
  • Thomas A. Klar

Beilstein J. Nanotechnol. 2013, 4, 974–987, doi:10.3762/bjnano.4.110

Graphical Abstract
  • Nikita Arnold Boyang Ding Calin Hrelescu Thomas A. Klar Institute of Applied Physics, Johannes Kepler University, 4040 Linz, Austria 10.3762/bjnano.4.110 Abstract We numerically simulate the compensation of absorption, the near-field enhancement as well as the differential far-field scattering
  • incident plane wave. The images are cut in the x–z plane, i.e., the plane spanned by the k-vector (z-axis) and the polarization of the electric field (x-axis). A three dimensional representation of the near field enhancement just outside the semi-shell structure is given on the lower left of both panels
  • (near-)field enhancement |E|/E0 close to the semi-shell structure and the differential scattering cross sections in the case of (90,0) illumination, for a near-threshold gain (A = 0, E = 1) and for the two resonances (cf. Figure 6d, blue curves). Figure 8a and Figure 8b are calculated at 511.3 nm, close
PDF
Album
Full Research Paper
Published 30 Dec 2013

Probing the plasmonic near-field by one- and two-photon excited surface enhanced Raman scattering

  • Katrin Kneipp and
  • Harald Kneipp

Beilstein J. Nanotechnol. 2013, 4, 834–842, doi:10.3762/bjnano.4.94

Graphical Abstract
  • hottest spots can be enhanced by three orders of magnitudes. Nanoaggregates of 100 nm dimensions provide one hot spot on this highest enhancement level where the enhancement is confined within less than 1nm dimension. The near-field enhancement in the hottest spots increases with decreasing photon energy
  • provide extremely high near-field enhancement levels, which are suitable for single-molecule SERS under non-resonant conditions. The silver structures were prepared by a standard citrate reduction procedure [37]. In this study, SERS experiments are carried out in solutions of silver nanoaggregates under
  • , we discuss hyper Raman scattering as a method to separate information about the near-field enhancement and for probing local fields in hot spots in more detail. Surface enhanced two-photon excited hyper Raman scattering During hyper Raman scattering (HRS), two photons interact simultaneously with the
PDF
Album
Full Research Paper
Published 02 Dec 2013

Controlling the near-field excitation of nano-antennas with phase-change materials

  • Tsung Sheng Kao,
  • Yi Guo Chen and
  • Ming Hui Hong

Beilstein J. Nanotechnol. 2013, 4, 632–637, doi:10.3762/bjnano.4.70

Graphical Abstract
  • demonstrated that in a hybrid plasmonic nanosystem, the constituent nano-antennas can be selectively excited with a selected illumination wavelength and near-field enhancement can be positioned at the gap centres of each antenna by controlling the intermediate phases of an underlying GST phase-change thin film
PDF
Album
Full Research Paper
Published 09 Oct 2013

Mapping of plasmonic resonances in nanotriangles

  • Simon Dickreuter,
  • Julia Gleixner,
  • Andreas Kolloch,
  • Johannes Boneberg,
  • Elke Scheer and
  • Paul Leiderer

Beilstein J. Nanotechnol. 2013, 4, 588–602, doi:10.3762/bjnano.4.66

Graphical Abstract
  • a wavelength of 800 nm, which excited higher order plasmon modes in these triangles. The ablation distribution as well as the local melting of small parts of the nanostructures reflect the regions of large near-field enhancement. The observed patterns are reproduced in great detail by FDTD
  • profile of the laser is of vital importance: To gain insight into more than the distribution of the near-field enhancement of a nanoscale object, the absolute enhancement factor has to be measured. In near-field photography, this is commonly done by comparing the threshold of the imaging mechanism (e.g
  • ., ablation threshold) without near-field enhancement to one with a scattering nanostructure present during illumination (nanoscale ablation threshold). This route requires the precise knowledge of the fluence distribution of the illuminating laser spot. When a well-defined function describing the energy
PDF
Album
Supp Info
Full Research Paper
Published 30 Sep 2013

Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle

  • Paul Kühler,
  • Daniel Puerto,
  • Mario Mosbacher,
  • Paul Leiderer,
  • Francisco Javier Garcia de Abajo,
  • Jan Siegel and
  • Javier Solis

Beilstein J. Nanotechnol. 2013, 4, 501–509, doi:10.3762/bjnano.4.59

Graphical Abstract
  • after excitation. Keywords: crystalline Si; fs-resolved microscopy; laser ablation; near-field enhancement; ultrafast dynamics; Introduction The term “near field optics” is used to describe the phenomena associated to non-propagating and highly localized electromagnetic fields and their interaction
PDF
Album
Full Research Paper
Published 04 Sep 2013

Plasmonic oligomers in cylindrical vector light beams

  • Mario Hentschel,
  • Jens Dorfmüller,
  • Harald Giessen,
  • Sebastian Jäger,
  • Andreas M. Kern,
  • Kai Braun,
  • Dai Zhang and
  • Alfred J. Meixner

Beilstein J. Nanotechnol. 2013, 4, 57–65, doi:10.3762/bjnano.4.6

Graphical Abstract
  • a plasmonic oligomer under radial and azimuthal excitation. The upper row of Figure 9 depicts the near-field intensity distribution within the symmetry plane of the cluster; the lower row shows a 3-D plot of the same data. In both excitation geometries we observe a strong near-field enhancement
PDF
Album
Full Research Paper
Published 24 Jan 2013

Plasmonic nanostructures fabricated using nanosphere-lithography, soft-lithography and plasma etching

  • Manuel R. Gonçalves,
  • Taron Makaryan,
  • Fabian Enderle,
  • Stefan Wiedemann,
  • Alfred Plettl,
  • Othmar Marti and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2011, 2, 448–458, doi:10.3762/bjnano.2.49

Graphical Abstract
  • can be utilized in experiments requiring light confinement. Keywords: nanosphere-lithography; near-field enhancement; plasma etching; soft-lithography; surface plasmons; Introduction Classical electromagnetic theories describing optical transmission through small apertures [1][2] do not take into
PDF
Album
Full Research Paper
Published 16 Aug 2011
Other Beilstein-Institut Open Science Activities